Exercício 8-3 – Exercício de análise vetorial: Avaliação multicritério, melhor alternativa

1h30m

INTRODUÇÃO

Neste projeto pretende-se efetuar um estudo de impacto ambiental relativamente à seleção da melhor alternativa entre vários traçados propostos para a linha ferroviária de alta-velocidade Madrid-Valencia. Numa primeira fase, especialistas ambientais analisaram o caso e decidiram ter em conta a qualidade ambiental do território como um dos critérios a considerar. Assim a partir do mapa florestal Espanhol, do Ministério do Ambiente, analisaram a vegetação e espécies da zona, criando unidades ambientais e valorizando-as ambientalmente.

Para este estudo consideramos que devem ser avaliados os seguintes aspetos territoriais:

- Impacto sobre a vegetação em função da qualidade ambiental
- Impacto sobre lugares de interesse comunitário (LIC)
- Impacto sobre pontos de interesse geológico (PIG)

OBJETIVOS E COMANDO NOVOS

Aprofundar a análise multicritério e a reclassificação de dados vetoriais. Usar novas ferramentas de análise espacial.

- Análise Vetorial, merge: Arctoolbox-Data Management Tools Genaral- Merge
- Análise Vetorial, intersect: Arctoolbox-Analysis tools-Overlay Intersect
- Análise Vetorial, near. Arctoolbox-Analysis tools Proximity Near

INFORMAÇÃO DE PARTIDA

- "ave.shp", camada vetorial com 3 alternativas para o traçado da rede ferroviária de alta velocidade
- ilics.shp" camada de polígonos representando lugares de interesse comunitário do Mediterrâneo
- pigs.shp" camada de pontos representando pontos de interesse geológico a sudeste da Comunidade de Madrid
- " "espe.txt", tabela completa de códigos de espécies do Mapa Florestal Espanhol (MFE)
- i "unidamb.txt", tabela de correspondência entre as unidades do MFE e as unidades ambientais
- i "calamb.txt", tabela de correspondência entre unidades ambientais e qualidade ambiental

PLANEAMENTO

- 1. Criar uma camada de qualidade ambiental seguindo as tabelas de correspondência dos especialistas
- 2. Eleger a melhor alternativa em função do impacto ambiental

Resolução

1. Objetivo: Criar uma camada de qualidade ambiental seguindo as tabelas de correspondência dos especialistas.

- 1. Abrir um novo projeto ArcMAP e a camada do mapa florestal espanhol mfe.shp.
- 2. Adicionar as tabelas espe.txt, unidamb.txt e calamb.txt
- 3. Criar três ligações de Join entre a camada mfe.shp e as tabelas de correspondência, tais que:

Join1: mfe.Rotulo1 = espe.rotulo

Join 2: mfe.vegetacion=uniamb.vegetacion

Join 3: mfe.unidad_amb=calamb.unidad_amb

4. Unir os polígonos com a mesma qualidade ambiental e gerar uma camada de unidades de qualidade ambiental

Arctoolbox-Data Management Tools – Generalization- Dissolve
 Field: calidad_amb e Valor
 Output: ca.shp

2. Objetivo: Eleger a melhor de três alternativas em função do impacto ambiental

O estudo de impacto ambiental vai ser dividido em 4 fases. Nas primeiras 3 fases analisaremos o impacto que tem cada alternativa sobre cada um dos três fatores e só na fase final, faremos a avaliação multicritério.

2.1. Primeiro analisaremos o impacto sobre os LIC. A metodologia para a avaliação do impacto baseia-se em linhas gerais na proporcionalidade do impacto face ao comprimento do troço da rede ferroviária de alta velocidade em cada LIC. Para o efeito é necessário cruzar (interseção espacial) a camada lic.shp com a camada ave.shp, e determinar o comprimento de cada troço total inserido em cada LIC.

- Adicione as camadas lic.shp e ave.shp
- Proceda à interseção das duas camadas através de Arctoolbox-Analysis tools-Overlay Intersect

Input: "ave" e "lic"

Output: "avelic.shp"

 Criar um novo campo na tabela da camada "avelic.shp", com o nome "ImpactoLIC" do tipo double, e calculam-se os comprimentos de cada troço usando a função Calculate Geometry sobre a coluna ImpactoLIC, property: "Length"

 Para obter um resumo com o comprimento total em cada LIC, faz-se um Summarize, campo "ID",

estatística "Sum" do campo "ImpactoLIC", com output: "Impacto_LIC.dbf"

E	Summarize ×	mpactoLIC
S DEI		11234,013428
S DEI	Summarize creates a new table containing one record for each unique value of	14695,065131
S DEI	the selected field, along with statistics summarizing any of the other fields.	226,397948
	1. Select a field to summarize:	>
	 Choose one or more summary statistics to be included in the output table: 	
	ESITE_CODE ▲	L
	±REGION	لام
	Shape Length	
	- ImpactoLIC	
	- Minimum	
	U Maximum	
\land		
	Standard Deviation	
$\left \right\rangle$	Variance	
	✓	
	3. Specify output table:	
	VULAS\SIG\SIG2016-2017\Praticas\Exerc8-5\Impacto_LIC.dbi	
	Summarize on the selected records only	
	About summarizing data OK Cancel	5

2.2. O segundo critério é sobre a qualidade ambiental. Neste caso, o impacto também é proporcional ao comprimento, mas multiplicado pela qualidade ambiental das unidades que o troço atravessa.

- Adicione a camada ca.shp da qualidade ambiental.
- Proceda à interseção das duas camadas através de Arctoolbox-Analysis tools-Overlay Intersect

Input: "ave" e "ca"

Output: "aveca.shp"

- Adicione o campo "Comprimento" do tipo double e calcule os comprimentos.
- De seguida adicione um novo campo na tabela da camada "aveca.shp" de nome "ImpactoCA" do tipo double e usando o Field Calculator calcule: Comprimento * Valor

 Para obter um resumo do impacto total para cada alternativa use o Summarize, campo "ID",

							C ×	* Arc
							×	u ¤ 3
Calidad_amb	Valor	FID_ave	ID	Shape_Length	ImpactoCA	Constant des		0
Null>	<null></null>	0	1	989,407922	<null></null>	Summanze		^
aja	2	0	1	33135,03109	66270,062179			
ledia	3	0	1	13264,648298	39793,944893	Summarize creates a new table containing one record for each unique	value	of
luy Alta	5	0	1	696,693304	3483,466518	the selected field, along with statistics summarizing any of the other fie	lds.	
uy baja	1	0	1	2589,780976	2589,780976			
aja	2	1	3	33057,947432	66115,894864	4. Onland a Bald to summarize		
ledia	3	1	3	6176,228543	18528,68563	 Select a field to summarize: 		
luy Alta	5	1	3	974,40105	4872,005252	ID	\sim	
uy baja	1	1	3	859,47564	859,47564			
Ita	4	2	2	11691,999588	46767,998351	Choose one or more summary statistics to be included in the		
aja	2	2	2	28692,850343	57385,700687	output table:		
edia	3	2	2	9982,724337	29948,17301	Tcaliamb txt Calidad amb	^	
luy Alta	5	2	2	687,339328	3436,696638	caliamb txt Valor		
iuy baja	1	2	2	3886,040898	3886,040898	+FID ave		
						ImpectoCA Minimum Maximum Average Sum Standard Deviation Variance	*	
						3. Specify output table:		
						\AULAS\SIG\SIG2016-2017\Praticas\Exerc8-5\ImpactoCA.dbf	66	
						Summarize on the selected records only About summarizing data OK Ca	ncel	

estatística "Sum" do campo "ImpactoCA", com output: "Impacto_CA.dbf"

2.3. O terceiro e ultimo critério refere-se ao impacto sobre os pontos de interesse geológico (PIG). Este impacto vai ser medido através de uma relação inversamente proporcional ao quadrado da distância que separa cada PIG de cada alternativa do traçado da rede ferroviária.

- Adicione a camada pig.shp dos pontos de interesse geológico
- Usando o Select by attributes exporte cada traçado para uma camada distinta: ave1.shp, ave2.shp e ave3.shp
- Procede-se ao cálculo das distâncias entre cada PIG e o traçado ave1: Arctoolbox-Analysis tools – Proximity – Near
 - o Input: pigs
 - o Near: ave1

Este comando não cria nenhuma nova camada, apenas adiciona novos campos à tabela de atributos da camada de input: NEAR_FID e NEAR_DIST

- Adicione um novo campo à tabela dos PIG de nome "Impacto1" do tipo double e calcule, usando o Field Calculator, a expressão:
 - o 1/([NEAR_DIST]/10000)^2

	5 H 6 H 4			~			
Table	Field Calculator			^			
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Parser VB Script O Python Fields: FID Shape PIG NOMB NEAR Impac	Type: Number String Date	Functions: Abs () Atn () Cos () Exp () Fix () Int () Log () Sin ()		NEAR_FID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NEAR_DIST 237747,003017 252104,980677 250206,233465 290142,089948 209491,987005 92475,54166 250267,731137 263794,432351 266664,936931 158700,051514	Impacto1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
111 121 131 141 151 161 171 181 191 201 211 222	Show Codeblock Impactol = 1/([NEAR_DIST]/10000)^2		Sqr() Tan()	=		37722,690389 126424,650008 117883,837992 251090,825773 186714,154221 192869,536384 141868,673526 69867,664894 261456,121257 237130,219816 250119,238605	
- 01					Ő	114177 998621	0

- Repita os mesmos procedimentos para calcular o impacto2 sobre a alternativa ave2 e impacto3 sobre a alternativa ave3.
- Por fim a sua tabela pigs tem 3 novas colunas: Impacto1, Impacto2 e Impacto3 e valores para cada pig. Faça uma análise estatística de cada um dos campos novos e determine a soma total para cada impacto:

Impacto3 1 0,001833 1 0,001833 9 0,001632 3 0,001638 5 0,001781 6 0,001876 5 0,001876 6 0,001876 7 0,029046 1 0,016058 5 0,001785 6 0,001786 7 0,029046 1 0,0160588 2 0,005686 2 0,005686 3 0,001471 Maximum: 21,223833 2 0,002711 Mean: 0,712096 4 0,002711	Analysis Too Be Extract Be Overlay Be Proximity
1 0,001833 9 0,001833 9 0,001833 5 0,001638 5 0,00147 5 0,00244 9 0,005896 6 0,00179 7 0,022404 1 0,01638 5 0,001385 6 0,001791 1 0,016058 1 0,001638 1 0,00183 2 0,001638 1 0,00183 1 0,001838 1 0,00188 1 0,000188 1 0,000188	Buffer
1 0,001833 9 0,001602 3 0,001602 5 0,00177 5 0,002444 9 0,002896 6 0,001791 7 0,022046 6 0,001791 7 0,022046 1 0,016656 1 0,001791 2 0,005066 1 0,01177 Maximum: 21,223833 2 0,007061 3 0,001471 Maximum: 32,044311 Mean: 0,712096 3 0,001471 Maximum: 32,72896	
9 0,001602 3 0,001638 5 0,00174 9 0,005896 2 0,001578 6 0,001791 7 0,022946 1 0,0160586 1 0,0160586 1 0,0160586 1 0,0160586 1 0,0160586 1 0,0160586 2 0,0007061 2 0,0050686 1 0,001671 1 0,0160586 1 0,001701 1 0,0160586 2 0,0017061 1 0,0160586 1 0,001701 1 0,0160586 1 0,001701 1 0,0160586 1 0,001701 1 0,0160586 1 0,001701 1 0,0160586 1 0,001701 1 0,0000 1 0,00000 1 0,	^Generate
3 0,001638 5 0,00117 5 0,00244 9 0,002896 9 0,002896 1 0,00185 6 0,001785 7 0,00186 1 0,01865 1 0,016058 1 0,016058 1 0,016058 1 0,016058 1 0,016058 2 0,0007061 3 0,001471 Maximum: 21,22833 2 0,0007061 3 0,001471 Maximum: 32,04311 Mean: 0,712096 4 0,000241 1 Mean: 0,712096	
5 0,00117 5 0,002444 9 0,005896 2 0,001365 5 0,001385 6 0,001385 7 0,022946 1 0,0160586 2 0,005066 1 0,0160586 2 0,005066 1 0,00160586 2 0,005066 1 0,00170 1 0,02946 2 0,005066 1 0,00177 1 0,02946 2 0,00178 1 0,0117 Maximum: 21,223833 2 0,001471 Mean: 3,27896	
5 0,002444 9 0,002896 2 0,001578 6 0,001385 6 0,001791 7 0,029046 1 0,016058 1 0,016058 1 0,016058 2 0,0007061 3 0,001471 3 0,001471 Maximum: 21,22833 2 0,007061 3 0,001471 Mean: 0,712096 4 0,0002711 5 0,0024311 Mean: 0,278296	
g 0.005896 Field 2 0.001576 Impacto3 Impacto3 5 0.001381 Statistics: Impacto3 7 0.022946 Count: 45 Iminimum: 0.00117 2 0.005086 Minimum: 32,122833 Statistics: 2 0.005068 Sum: 32,044311 Mean: 0,712096 3 0.0014711 Mean: 0,712096 S7896	
2 0.001578 (mpacto3 Prequency Diatibutic 5 0.001385 Statistics: Count: 45 Count: 45 1 0.016058 Minimum: 0.00117 Count: 45 Count: 45 2 0.005068 Miximum: 21,228333 Count: 32,042311 3 0.001711 Mean: 0,712096 Statistics: 3,257896	
5 0,001385 6 0,001791 7 0,029046 2 0,005068 2 0,005068 2 0,007061 3 0,001471 Maximum: 21,223833 5 um: 32,044311 Mean: 0,712096 4 0,0002711 5 statistics:	an 🛛
6 0.001791 Statistics: 7 0.023046 Count: 45 1 0.016058 Count: 45 2 0.005068 Maximum: 21,22833 2 0.007061 Sum: 32,044311 3 0.001471 Mean: 0,712096 4 0.002711 Standard Deviation: 3,257896	
7 0.023046 Count: 45 1 0.016058 Minimum:: 0.00117 9 2 0.005086 Maximum: 21,22833 9 2 0.007061 Sum:: 32,044311 9 3 0.001771 Mean:: 0,712066 0,712056 4 0.002711 Standard Deviation: 3,257896 9	
1 0,016058 Minimum: 0,00117 0000000000000000000000000000000	
2 0,005086 Maximum: 21,223833 40 2 0,007061 Sum: 32,044311 3 0,001471 Mean: 0,712096 4 0,002711 Standard Deviation: 3,257896	
2 0,007061 Sum: 32,044311 3 0,001471 Mean: 0,712096 4 0,002711 Standard Deviation: 3,257896	18.7
3 0,001471 Mean: 0,712096 4 0,002711 Standard Deviation: 3,257896	
4 0,002711 Standard Deviation: 3,257896	
4 0.002478 Nulls: 0	
3 0.005563	
6 0.058307	
1 0.001377	
0.00162	
5 0 00148	

Registe esses valores: 93.415829; 118.023445 e 32.044311, respetivamente para cada Impacto.

- Crie agora uma nova tabela com o comando *Create Table* através do ArcCatalog New – dBASE table de nome "Impacto_PIG.dbf", à qual adicionamos os campos "ID" do tipo large integer e "Sum_ImpactoPIG" do tipo double, e eliminamos os campos "OBJECTID" e "FIELD1", e editamos os valores manualmente
 - ID Sum_ImpactoPIG
 - 1 93,415829
 - 2 118,023445
 - 3 32,044311

2.4. O passo final consiste em reunir os 3 critérios e eleger o melhor dos três traçados. Começamos por igualar as escalas dos três impactos calculados, dividindo entre cada impacto pelo seu valor máximo,

multiplicando por 100 para usar uma escala de 0-100, arredondando a inteiro. Designa-se a este processo por normalização das escalas:

Impacto_x = round (Impacto_x / MAX(Impacto_x))

Por exemplo para o Impacto_CA:

- Efetue a normalização para os impactos das tabelas Impacto_LIC.dbf e Impacto_PIG.dbf.
- De seguida efetue o join da camada "ave.shp" com cada uma das tabelas anteriores: Impacto_LIC.dbf, Impacto_CA.dbf e Impacto_PIG.dbf, usando sempre o *field* "ID", para estabelecer estas relações, obtendo assim uma tabela final tal como se apresenta de seguida:

Tak	ole													
-	🔁 • 🏪 🗞	S 🐔 🗙												
ave	,													
	FID	Shape *	ID	OID	ID *	Cnt_I	Sum_Impact	OID	ID *	Cnt_I	Sum_Impact	OID	ID *	Sum_Impact
	0	Polvline	1	0	1	1	66	0	1	5	79	0	1	79
				· ·			00				10	0		10
	2	Polyline	2	1	2	2	94	1	2	5	100	1	2	100

O **Impacto final** é então calculado através da média ponderada dos impactos LIC, CA e PIG. Considerase para efeitos de simplicidade do exercício que cada impacto contribui de igual forma para o impacto final. Assim adicione um novo campo ("**Impacto**"), do tipo *short integer* à tabela da camada ave.shp e usando o *Field calculator*, calcule o impacto final através da expressão:

([Impacto_LIC.Sum_Impact] + [Impacto_CA.Sum_Impact] + [Impacto_PIG.Sum_Impact]) / 3)

O menor dos valores indica o traçado ótimo: o número 3!

Tał	ole															□ ×
ave	e															×
	FID	Shape *	ID	OID	ID *	Cnt_I	Sum_Impact	OID	ID *	Cnt_l	Sum_Impact	OID	ID *	Sum_Impact	ave.Impacto	
	1	Polyline	3	2	3	2	100	2	3	4	64	2	3	27	64	
	0	Polyline	1	0	1	1	66	0	1	5	79	0	1	79	75	
	2	Polyline	2	1	2	2	94	1	2	5	100	1	2	100	98	
н	0,	" 🔳 (1 ou	it of	3 Sel	ected)										

